
High-order behaviour of zero-component field theories without the n→0 limit

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 1309

(http://iopscience.iop.org/0305-4470/12/8/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:53

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 8, 1979. Printed in Great Britain 

High-order behaviour of zero-component field theories 
without the n + O  limit 

A HoughtontP and Lothar SchaferSII 
t Physics Department, Brown University, Providence, RI 02912, USA 
tj: Institute for Theoretical Physics, University of Heidelberg, 6900 Heidelberg, West 
Germ any 

Received 13 October 1978, in final form 18 December 1978 

Abstract. We show that direct evaluation of the Green function of the random electron or 
polymer problem by a steepest-descents method yields results identical to those obtained in 
the n + 0 limit of Landau-Ginzburg field theory. The essential feature of the method lies in 
the observation that only a restricted set of potnetials contributes to Im G ( x l ,  x2) and 
therefore the variational procedure must be restricted to this class. 

Our calculation shows that the correct asymptotic information has been used in 
calculating critical exponents for the polymer system, and verifies the density of states 

,,(E) = p, /g l - (d+1) /2 ( -  ~ ) d ( S - d 1 / 4  exp[- c (  - ~ ) ~ - ~ / ~ ~ g / - l ]  

found recently by n + O  methods. In our method the expression for the degree of 
localisation is obtained immediately. 

1. Introduction 

It has been pointed out by several authors that the properties of disordered electronic 
systems (Ma 1972, Thouless 1975) and polymers in solution (de Gennes 1972, Emery 
1975) may be discussed by taking advantage of the formal equivalence, order by order 
in perturbation theory, with the n + 0 limit of an n-component Ginzburg-Landau field 
theory. Renormalisation group theory and the E expansion can then be used to 
calculate exponents (de Gennes 1972) for the polymer problem. For the electron 
system the analogy has not proved as useful, because the only known fixed point is 
unattainable (Aharony er a1 1976). For this problem a knowledge of perturbation 
theory beyond that given by the renormalisation group is certainly needed. 

Recently it has been shown that, although perturbation theory in the coupling 
constant g has zero radius of convergence, the divergence is controlled by the existence 
of non-trivial solutions of the classical Ginzburg-Landau equations with finite-action 
instantons (Lipatov 1976, 1977, Langer 1967, BrCzin et a1 1977). The form of the 
divergence can be characterised and the imaginary part of the correlation functions can 
be computed exactly for small negative g. This information has been used to compute 
critical exponents to high accuracy (Le Guillou and Zinn-Justin 1977), and more 
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recently Cardy (1978) has calculated the density of localised states in the energy band of 
a disordered solid. 

The question remains whether or not the analogy between field theory in the n + 0 
limit and disordered systems (polymer solutions) is retained when non-perturbative 
methods such as those discussed above are used. This can be judged only from the 
results. Cardy, using the n + 0 limit, found the energy dependence for the density of 
states p(E)  in the tail of an infinite band: 

exp[ - constant x (- E)””]. (1.1) 

The energy dependence of the exponent agrees with the earlier results of Halperin and 
Lax (1966, 1967), Zittartz and Langer (1966) and Edwards (1970). (Compare also 
Thouless and Elzain (1978), Edwards (1978).) The prefactor E3” for d = 3 was first 
given by  Halperin and Lax (1966, equation (7.16)). Edwards’ method suggests a 
prefactor E3l4, whereas Zittartz and Langer do not give the energy dependence of the 
prefactor explicitly for d = 3. All these approaches-except for Edwards (1978)-use 
variational methods without resorting to the analogy with n + 0 field theory. 

Thus it is not completely clear whether the n + 0 method gives the correct energy 
dependence of p(E) ;  and whether it gives the correct proportionality constants in 
equation (1 .l) is an open question. To solve these problems we here re-derive equation 
(1.1) using the recently established field theoretic methods, but avoiding the n + 0 limit. 
Although the conventional steepest-descents method cannot be applied, we are able to 
formulate a variational principle which permits exact calculation of the density of states 
for g + 0 and makes contact with the earlier work of Zittartz and Langer (1966). We 
recover the results of the n + 0 limit, including the proportionality constants, and we 
thus justify the application of the n + 0 method as given by Cardy. 

d(5-d)/4 p ( E )  = constant x (- E) 

2. The variational principle 

We are concerned with the properties of the Green function 

averaged over the (real) single-particle potential +(x): 

Here d is the dimensionality of the space. For real positive values of g and m2 > 0, 
G(xl, x 2 )  is known to represent correlations among the end-points of a self-interacting 
polymer molecule of length N - m - ’ .  For negative g and $ m 2 =  -,??*is, G(xl, x2) 
represents the average Green function for a particle of energy E moving in a random 
potential -lgll”+(x). For m 2  3 0, G(xl, x2) has a cut in the complex g plane along the 
negative real axis; G(xl, XZ) is then fully determined by its imaginary part along this cut 
via a dispersion relation. Further, the limiting behaviour of the large orders of the 
formal perturbation series in powers of g are characterised by Im G for small negative 
values of g. We here aim at a calculation of Im G for g < 0, Igl+ 0. 

The standard solution to this problem (BrCzin et a1 1977) exploits the observation 
that G(xl, XZ) can be represented formally as the n = 0 limit of a Landau-Ginzburg field 
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theory for an n-component spin field S ( x )  = ( S l ( x ) ,  . . . , S n ( x ) ) :  

G(x1, x 2 )  = lim I D[SISI(~I)SI(~Z) 
n - 0  

x exp( - J ddX[fm2S2(~)+f (VS(~) )2+~g(S2(~ ) )Z] ) .  (2.3) 

A steepest-descents analysis of this functional integral yields the desired information as 
a function of n ; then the limit n -f 0 is taken in the result. For the reasons explained 
above we wish to avoid the n + 0 limit. Instead we apply the steepest-descents method 
directly to equation (2.2). 

Such an approach has been used previously by several authors (Zittartz and Langer 
1966, Edwards 1970) and has led both to a prediction of the density of localised states in 
the band tail of the random electron system and to a theory of the configuration of a 
polymer molecule in a good solvent. In this work $ ( x )  is varied to find that potential 
which yields the maximum contribution to the functional integral (2.2). However, we 
note that the form of the integrand is not directly suited to a steepest-descents 
evaluation, which may lead to incorrect results in the problem of interest to us. We 
illustrate this by a simple example. 

Consider the one-dimensional integral 
+CO 

I1 = d$ e-'*( 1 + i& $)-I, g=-lgl+iS, (2.4) 
J-CO 

which may be thought of as the propagator of a one-dimensional field defined at one 
point. The imaginary part of II is found from 

+CO 

II = - /g/-'/'p d$ e-"'($ - lgl-'/2)-1 +iT/gl-'/' e-'/lgl, (2 .5 )  

where P denotes the principal value. We now try to evaluate I1 by the steepest-descents 
method. The saddle point (lS is found as the solution of the equation 

-CO 

211, + (a/asl/) l n ( l+  i& $1 = 0. 

4, = - (l/i&)(I + i g  + 0 ( g 2 ) ) .  
Therefore 

Setting I) = $, + q# and expanding the integrand around the saddle point we find 

For small negative g this integral has to be interpreted as the analytic continuation from 
g > 0, or it can be obtained by properly deforming the contour of integration (see e.g. 
Langer 1968, Wallace 1979). The result is 

(2.9) Im I' - (,r\gI)"'(l+ i& ((I,)-' e-":. 

With $, given by equation (2.7) we find 

Im I' -exp(r'/2)1gl-'/2 e-""', (2.10) 

which is to be compared with the correct result of equation (2.5), 
Im 1' = .n/gj-'/' e-m (2.11) 
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The difference between these two results shows that the steepest-descents approxima- 
tion incorrectly estimates Im Il. Indeed, a closer inspection shows that all the higher- 
order terms in equation (2.8) contribute to the constant factor in front of the exponen- 
tial exp ( -  l / /gl ) .  We therefore expect that the straightforward steepest-descents 
evaluation of our full problem (equation (2.2)) could lead to incorrect factors multiply- 
ing the leading exponential. 

This simple example, however, shows how to circumvent this problem. As we see 
from equation (2.4), the imaginary part of Il is given by the pole term; similarly in the 
full problem only those potentials for which %(xl, x2, [$I) is singular contribute to the 
imaginary part. Therefore we must restrict our variation to this class of functions. This 
defines a surface in function space; we then ask for that function $s on this surface which 
maximises the weight e-’2. We again illustrate the method by a simple example. 

Consider the two-dimensional integral 
+m +m 

G,  = [ dx [ dy e--(X2+Y2)[A-111,, 

where the matrix A is given by 

(2.12) 

(2.13) 

The matrix elements Gii are analytic in the cut g plane. We will again determine the 
imaginary part for g = - Igl + i s  exactly and by the variational method. 

2.1. Exact calculation 

The inverse matrix A-’ is given by 

(2.14) 

Hence we see that the diagonal elements of G are integrals of odd functions of (x, y )  and 
vanish identically. The off -diagonal elements are given by 

and therefore 

(2.15) 

(2.16) 

where KO is a modified Bessel function. As we are only concerned with Im G12 for Ig/ 
small, we may use the asymptotic expansion 

(2.18) 
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2.2. Variational calculation 

Clearly Gii has an imaginary part only if the matrix A has a vanishing eigenvalue. This 
defines a surface (line) in our two-dimensional space: 

det A = - (gxy + 1 )  = 0. (2 .19)  

The maximum contribution to Im Gii is due to that point (x , . y s )  on the line defined by  
equation (2 .19 )  which minimises the exponent x 2  + y 2 .  The variational condition is 

s ( x Z + y 2 ) - p s ( g x y + 1 ) = 0 ,  (2 .20 )  

where p is a Lagrange multiplier for the condition (2 .19 ) .  These equations are easily 
solved for the saddle-point solution: 

2 2  
xs = y s  =Id' (2 .21 )  

Note there are two saddle points symmetrically placed about the origin. To evaluate the 
contribution from any one saddle point, we transform from the coordinates ( x .  y )  to a 
set of generalised coordinates adapted to the geometry of our problem. As one 
coordinate we take that eigenvalue A whose zero defines the surface. As the other 
coordinate any one of the pair (x ,  y )  can be used. The Jacobian of the transformation 
J = dx/dA I yfixed is found from the eigenvalue equation; we will only need the value of 
the Jacobian at the saddle point A = 0, y = y,. We find 

J = -2Igl-? (2 .22 )  

We now expand the exponent x z  + y z  around the saddle point in the usual way, but we 
only allow variations in the surface; thus 

1 + g(xs  + sx ) ( y ,  + s y  ) = 0 ;  

s x  = - Y s s y / ( Y s + s y ) .  

that is, 

( 2 . 2 3 )  

(2 .24 )  

Finally we find 

Here do is the eigenstate of zero eigenvalue of the matrix A evaluated at the saddle 
point. The integration over A gives the contribution to Im G from the zero eigenvalue, 
and the integration over S y  collects the contributions from the surface A = 0. For the 
diagonal elements the contribution of the two saddle points at x ,  = y ,  = * \g\-1/2 cancel, 
whereas for the off -diagonal elements they reinforce each other to give 

, (2 .26 )  G~~ = . r r 3 / 2 1 g / - 1 / 2  e-2/lgl 

in agreement with equation (2 .18 ) .  

problem. 
In the next section we will carry out the corresponding calculation for the full 
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3. Evaluation of the field-theoretic Green function 

3.1. The saddle point 

We search for the maximum of exp( -1 4') under the constraint 

det r($, m) = 0, (3.1) 

where 

r(4, m) = ($mZ +i& $ ( x ) ) ~ ( x  -xf)  -$vz 
The variational equation reads 

(3.2) 

2$(x) + ( p  x S/S$(x)) det I'($, m )  = 0. (3.3) 

From the well-known relation 

det r($, m) = exp(tr In r($, m)), (3.4) 

the functional derivative is easily evaluated; equation (3.3) becomes 

2 $ ( x ) + p  i&(x/I'-'($, m)lx> det r($, m) = 0. (3.5) 
Now if we write det r($, m) as a product of the eigenvalues A?,  i = 0, 1,2,  . . . of the 
matrix r and evaluate equation (3.5) in the limit A: + 0, we find 

+(x)+iJgP A Y ( ~ o " ( ~ ) ) ~ = o .  
2 ;=1 

Here 4: (x) is the normalised eigenstate corresponding to A 0" = 0: 

(3.6) 

U$, m)4o" = 0. (3.7) 
Equations (3.6) and (3.7) give the self-consistency condition 

( - y + - + g -  vZ mz p n A : ( q ! ~ O " ( x ) ) ~ ) q 5 O " ( x ) = O .  2 2;=1 

A non-trivial solution to equation (3.8) is found if 

q5?(x)=A-'md'z ,y(m(x-a)) ,  

as x ( z )  satisfies the instanton equation 

( - v 2 +  1)x(z)-x3(z) = 0 

if the Lagrange multiplier p is chosen according to 

(3.9) 

(3.10) 

The normalisation constant A is given by 

A = (1 ddzxz(z))1'2. (3.12) 

From equations (3.6), (3.9) and (3.12) the field $s at the saddle point is found to be 

= (i/2&)mZxZ(m(x - a ) ) ,  (3.13) 
where x(m(x - a ) )  describes the instanton centred at a.  
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3.2. Fluctuations around the saddle point 

It is now convenient to exhibit the mass dependence of the problem explicitly. The 
eigenvalues A ?  and eigenfunctions q5? of the operator I'(+s, m )  are related to the 
corresponding A i  and 4; of the theory with mass m = 1 by 

4? = md/24i(mx). (3.14) 

With this choice the 47 form an orthonormal set. We can expand the field + in a 
complete orthonormal set of functions $? : 

(3.15) 

2 A?=m Ai,  

d / 2  - $?(x) = m +i (mx) .  

We write 

and choose l/lo to be proportional to ,y2, 

$o(x) = I - 'x2(x) ,  
where the normalisation 

I = ( 5  ddx ,y4(x)) '", 

(3.16) 

(3.17) 

(3.18) 

Following the argument outlined in 0 2 we search for the surface in function space 
determined by the vanishing eigenvalue Ao.  Perturbation theory in S+" yields 

A = i & C  a , ( 4 2 I i Y I 4 ; )  
i 

Equations (3.9) and (3.17) together with the orthogonality of the set $? give 

(42/$?/~$0") = md/2A-21Si0, (3.20) 

and therefore 

A = - /g11/2md/2A-21a O - l g l C  aiaj C (~km-~)-~(40mI$?l~km)(4kml$imI40")+. * * 
1.1 k # O  

(3.21) 
Eliminating a0 in favour of A we find the Jacobian of the transformation given by 

(3.22) 

On the surface A = 0 the amplitude uo is determined by 

a. = - / g l ' / 2 m d / z - 2  - aiai h ; ' ( ~ o ~ ( / l i l ~ k ) ( ~ k ~ $ i ~ ~ O ) + O ( l g l ) .  (3.23) 

Then expanding the argument of the exponential'exp( -I (L:) around the saddle point, 
allowing only variations in the surface A = 0, we find 

A2 
I i , j # O  k # O  

(3.24) 
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where 

(S@lJu/S+) = J ddx ddx‘ S $ ( x ) ( S ( x  -x‘)-X(x)r-’(&, m = I ) x ( x ’ ) ) S + ( x ‘ ) .  

The allowed variations St,b are orthogonal to &o. 
Due to translational invariance the matrix A has d zero eigenvalues with the 

corresponding normalised eigenfunctions (a/aa,)4,(x - U ) I , = ~ ,  p = 1, . . . , d. Chang- 
ing variables in the usual way (see e.g. BrCzin er a1 1977 and references therein) we find 
the Jacobian 

(3.25) 

J = ( ( l /d )  I ddx(Vg,(x))’)d/2 (3.26) 

(3.27) 6-d 2 d/2 =[-(1/4g)m 1 1 1  9 

where 

1: = ( l / d )  ddr(VxZ(z))’ (3.28) 

Parametrising the functional integral (2.2) in terms of A ,  a and 64 we may write down an 
explicit expression for Im G(xl, xz), 

(3.29) 

where now 84 is orthogonal to Go and ( d / d a w ) & .  Using equations (3.9), (3.22), (3.27) 
and performing the integral over A, the m-dependence of Im G is made explicit, 

Im G(xl ,  x 2 )  = . r r ( l - d ) / 2 ( l g l m d - 4 ) - ( d + l ) / ~ m d - 2 ( ~ 1 1 ) d 1 - l  

(3.30) 

C = (det A)-”’. (3.31) 

As can be seen from the derivation, this result is valid when the dimensionless coupling 
constant Iglmd-4 is small; it confirms equation (27) of Cardy (1978). As noted in 0 2 for 
the random electron problem tm’ = -E; therefore equation (3.30) implies a density of 
states in the tail of the band 

( -  ~ ) d ( S - d ) / 4  exp[ - I’( - 2~)’ -~ / ’ /4)g l ] .  (3.32) 

We should point out that the stability matrix Ju occurring in our method differs from 
that of the n + 0 Landau-Ginzburg theory. However, when the determinant of Ju is 
calculated (see Appendix) the constant appearing in equation (3.30) coincides with the 
usual result. 

We note that we have ignored renormalisation problems which are to be handled by 
standard methods (Zinn-Justin 1978; private communication). As first discussed by 
Halperin and Lax (1967), the constant C is singular. This divergence is an artifact of the 
white-noise model and can be avoided by introducing a small but finite range A-’ of the 
correlations of the potential fluctuations. In the regularised model, C for d > 2 is found 

-(d+1)/2 P(E) = P o k  
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to have a contribution e ~ p [ B ( A / m ) ~ - ~ ] ,  where B is a numerical constant. Evidently 
this contribution diverges in the white-noise limit A + CO. For 2 < d < 4 this artifact can 
be cured by a simple mass renormalisation (Zinn-Justin 1978; private communication). 
We write m2 = m; f lglI-’BAd-*[4/(4 - d ) ]  and we expand the exponent in powers of 
g. Working consistently to order go we find a counterterm - B(A/mR)d-2 which cancels 
the divergency in C to the order go considered. The effect is to shift the energy scale 
such that E = mk/2 is measured from the mobility edge (Halperin and Lax 1967, 
Edwards 1978), and to substitute C by a finite renormalised constant. With this 
reinterpretation, our results are finite. For d = 2 more complicated behaviour may 
result (Thouless and Elzain 1978). 

4. Conclusions 

We show that direct evaluation of the Green function of the random electron or 
polymer problem by a steepest-descents method yields results identical to those 
obtained earlier as the n = 0 limit of Landau-Ginzburg field theory. The essential 
feature of our approach lies in the observation that only a restricted set of potential 
functions contributes to the imaginary part of G(xl ,  XI), and therefore the variational 
procedure has to be restricted to this subset. 

Our calculation verifies that the correct asymptotic information has been used in 
calculating the critical exponents for the polymer system and supports the calculation of 
the density of states in the band tail for the random electron problem which has been 
presented by Cardy. Like the n + 0 Landau-Ginzburg field theory it can be used to 
evaluate other quantities of interest. For instance consider the expression 

%(XI, X I ,  €+iS)%(xl,  x2, E- i s ) ,  (4 .1)  
s+o 

which is non-zero if the states are localised (Anderson 1958). Again a non-vanishing 
contribution is caused only by those potentials 9 which yield a singular operator 
l--’(& ( -  2E)’ l2) ;  within our method the variational problem is identical to that solved 
above. We can therefore immediately write down the result 

(4.2) 
which gives 

I % ( E ) / ~ =  constant x Igl-(d+1)’2 ( -E)d ‘7 -d”4  exp[ - I 2 (  -2E)2-d/2/41gl] 

x J dda x2(mx1 + a)x2imx2 + a) .  (4.3) 

Again this result coincides with that given by Cardy. We note, however, that, unlike 
Cardy, in this derivation we do not have the problem of solving two coupled instanton 
equations. Two coupled equations will occur only if we ask for the average of a product 
of two Green functions evaluated at two different energies E and E + w. This problem, 
which is related to the AC conductivity of a random electron system, is currently under 
investigation. 
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Appendix. Evaluation of the determinant of 1 

First the operator r(&, m = 1) is regularised so that it has no zero eigenvalues: 

r($s, m = 1) = -l. 2 v 2  + + - t x ' ( x ) ,  
r, = r(+s, m = 1)-&X2(x). 

A, =I -x r ; lx .  

J%X2=EoX ; 

(1 -Eo)rCX = x 3 .  

rex= -?ex ; 

We know that both x 2  and ( a / a x , ) ~ ~  are eigenfunctions of : 

Let 
2 

then 

But from equation (A2) 
1 3  

therefore: 

Eo= 1 + 2 / ~ .  

Similarly, if we write 

Jllc(alax,)x2 = E1(a/ax,)x2, 

we find 

El = - ~ / 2 .  

Now ,y is approximately an eigenfunction of I'. with energy 

go= -&,&)/(xlx) = - + E A - ~ I ~ .  

Similarly ax lax ,  is approximately an eigenfunction of r, - x 2 ,  with energy 

We now have 

det At = lim Eo'ETd det(I - x l X 1 x )  
€+O 

= lim Ei'ETd det(r, -,y2)(det Fs)-' 

= lim (E&o)-'(&/El)d det'(r-x2)/detf r, 
€ + O  

€+O 
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where the determinants Det’(r-x2) and Det’ r have to be taken in the space ortho- 
gonal to axlax, and x respectively. Using equations A7, A9, A10 and A l l  we find 

Using this result in equation (3.30) we find the same constant as in the n -* 0 Landau- 
Ginzburg theory. 
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